

Electrochemical Oxygen Separation from Aircraft Fuel Tank Ullage

Daniel R. Carr and Michael C. Kimble Reactive Innovations, LLC

Presented at the

2014 ECS & SMEQ Joint International Meeting

October 6, 2014

www.reactive-innovations.com

2 Park Drive, Unit 4 Westford, MA 01886

(978) 692-4664

Importance of Separating Oxygen from Aircraft Fuel Tank Ullage

- During flight operations, aircraft fuel tanks contain oxygen rich fuel vapor that can combust
- This leads to explosion and fires as a result of
 - Sloshing fuel, lightning, static discharge, and electrical shorts
- This was demonstrated on July 17, 1996
 - A Boeing 747 exploded in mid-air leaving the East coast
- FAA and military flight operations have shown that reducing the O₂ content to less than 9% eliminates the possibility of combustion
- Inerting systems fill the ullage space with an inert gas
 - Stored suppressants such as explosion suppression foam, nitrogen or halon
 - OBIGGS (On-Board Inert Gas Generating System) generating inert gas via compressing air through a separation bed
- However, these systems are often heavy, costly, and can create logistical resupply challenges for military operations

Fuel Inerting for the V-22 Aircraft

- For military aircraft such as the V-22, the use of compressed engine bleed air to drive the separation process is not desirable
 - especially in landing zones that throttle back the compressor
 - However, there is plenty of electrical energy
- For this reason, an electrochemically driven inerting system was developed by Reactive Innovations
 - Uses a collection of membrane and electrode assemblies to remove the oxygen from the fuel and air mixture

Technology Behind Reactive's Oxygen-Fuel Separation System

5

- Uses an electrochemical potential to separate O₂ from air catalytically
- No compressor required
- Lightweight cells that are combined
- into arrays increase separation rate

- In theory, oxygen is not pumped through the membrane, but is transported through the membrane as a water molecule
- Pertinent reactions are:
 - Cathode: $O_2 + N_2 + 4H^+ + 4e^- \rightarrow 2H_2O_{(1)} + N_2$
 - Anode: $2H_2O_{(I)} \rightarrow O_2 + 4H^+ + 4e^-$
- The water used in this process is ideally balanced so that no outside water will be required
 - Electro-osmotic drag of water from anode to cathode
 - Water diffusion from cathode to anode
- This requires operating the separator at a selected current density to manage these opposing transport rates AND
 - Not producing hydrogen gas that consumes water

Experimental Setup

Current Stability at Varying Applied Potentials for Electrochemically Separating Oxygen

2

Gas Chromatography Analysis of Cathode Effluent Shows N₂ Enrichment (Air-Fed)

- Single Tubular Cell
- 13.74 cm² active area
- Air flow rate of 4.4 ml/min

	F	From GC Areas				
Trial	Peak Area	O2 %	% O2 Reacted			
Baseline	42444.94	21.00%	-			
1.00 volt	36715.11	18.11%	13.76%			
1.25 volts	32945.78	16.25%	22.62%			
1.50 volts	27056.53	13.35%	36.43%			

Separator Performs for Enriching N₂ in Kerosene-Air Mixtures

	From GC Areas				
Trial	Peak Area	O2 %	% O2 Reacted		
Baseline (kerosene air)	34722.07	21.00%	-		
1.0 volts (kerosene air)	30959.14	18.72%	10.84%		
1.25 volts (kerosene air)	30059.02	18.18%	13.43%		
1.5 volts (kerosene air)	27742.53	16.78%	20.10%		
1.75 volts (kerosene air)	23758.54	14.37%	31.58%		

*H2 present in cathode stream outlet

Cascaded Design Shows Even Higher N₂ Enrichment

Near Stoichiometric Flow Rates Give Stable Operating Performance

Case	Percent O ₂	Air Flow Rate (ml/min)		Stoichiometric
	Removed	Actual	Required	Factor
1.0V, Low	20.6%	2.0	0.9	2.2
1.0V, Med	3.2%	20.0	1.4	14.2
1.0V, High	0.3%	200.0	1.5	136.8
1.25V, Low	33.4%	2.9	2.1	1.4
1.25V, Med	3.5%	2.92	2.2	13.0
1.25V, High	0.4%	292.0	2.5	115.9
1.5V, Low	32.9%	4.4	3.2	1.4
1.5V, Med	3.9%	44.0	3.7	11.8
1.5V, High	0.5%	440.0	4.9	90.2

Mathematical Model Developed to Predict O₂ Removal in an Electrochemical Plug Flow Reactor

1)	r ₀₂ =	$\frac{j \cdot a_s}{nF}$
1)	r ₀₂ =	$\frac{j \cdot a_s}{nF}$

-)	ΠΓ							
			Cell	Cell	Oxygen	Air Flow	% O2 Re	emoved
2)	$\frac{\partial C_i}{\partial r_i} = -\nabla \bullet N_i - r_i$	Case	Voltage (V)	Current (A)	Content (%)	(ml/min)	Measured	Predicted
	∂t	А	1.00	0.0396	21.0	4.4	13.8%	16.3%
3)	$N_i = -z_i u_i F C_i \nabla \phi - D_i \nabla C_i + C_i \overline{\nu}$	В	1.25	0.0604	21.0	4.4	22.6%	24.8%
		С	1.50	0.0868	21.0	4.4	36.4%	35.7%
	. <i>i</i>	D	1.50	0.0884	21.0	44.0	3.0%	3.6%
4)	$C_{O_2}(x) = C_{O_2}^{in} - \frac{a_s f}{r E_s} x$	E, 1st Cascade	1.50	0.0904	21.0	4.4	46.1%	37.2%
		F, 2nd Cascade	1.50	0.0556	11.3	4.4	73.5%	69.0%

Inlet Air Conditions

Voltage Distribution Modeling to Help Optimize Current Distribution in Tubular Cells

Voltage Drops Across 6" Long Cells for Different Current Collector/Electrode Designs

Case	No. of CC	Braid	Conducitivies (S/cm)		Voltage
	Wires	Pattern	Wire	Pt Film	Drop (V)
1	1	-	384615	3571	0.19
2	2	Co-Linear	384615	3571	0.10
3	2	Co-Linear	384615	1905	0.10
4	1	-	384615	1905	0.20
5	1	-	617222	3571	0.13
6	2	Co-Linear	617222	3571	0.07
7	2	Co-Linear	617222	1905	0.07
8	1	-	617222	1905	0.13
9	1	-	264583	3571	0.27
10	2	Co-Linear	264583	3571	0.14
11	2	Co-Linear	264583	1905	0.15
12	1	-	264583	1905	0.28
13	2	Cross-Braided	384615	3571	0.09
14	4	Cross-Braided	384615	3571	0.07

Optimized Catalysts, Cell Design, and Operating Conditions for Removing O₂ Electrochemically From Fuel Tank Ullage

- Ambient temperature and pressure
- Hydrated membrane is the only water source
- 30 mA/cm² is present limit that shows stable performance and no hydrogen gas evolution @ 1.5 volts

This work was supported by Navy Contract No. N68335-11-C-0397

For More Information:

Michael C. Kimble, Ph.D. President & Founder Reactive Innovations, LLC

mkimble@reactive-innovations.com (978) 692-4664 www.reactive-innovations.com