

Reactive Separation of H₂S from Fuel Process Streams Using Ionic Liquids

Karen D. Jayne, Daniel R. Carr, Benjamin M. Slote, and Michael C. Kimble Reactive Innovations, LLC 2 Park Drive, Suite 4 Westford, MA 01886

> PRiME 2012 Conference Honolulu, Hawaii

> > October, 2012

Reactive Innovations, LLC

2 Park Drive, Unit 4, Westford, MA 01886

(978) 692-4664

Problem Background

- Renewable energy deriving from biomass sources has great potential for growth to meet our future energy demands.
- Biogas is produced in many different environments, including landfills, sewage sludge, and during anaerobic degradation of organic material.
- Biogas is comprised of methane (45-75% by volume), carbon dioxide (25-55%) and other compounds including hydrogen sulfide (100-10000 ppm) and volatile methylsiloxanes (50 ppm and less)
- Biogas can be converted to electricity through combustion processes or fuel cells, but must be purified:
 - CO₂ acts as a diluant, reducing energy content
 - H_2S is corrosive
- Separation processes are required to remove H₂S, CO₂ and siloxanes from Biogas to enable more widespread use of this alternative fuel.

Electrochemically Facilitated Transport Separation Approach

- In this approach, a sulfur compound such as H₂S or SO₂ forms a charge-transfer complex with a redox molecule (such as 4,5-dicyano-2,7-dinitrofluorenone) that is immobilized within an ionic liquid imbibed membrane
- A small potential is applied across the electrochemical cell which facilitates binding sulfur on one side of the cell and releasing it on the other side
- This process lends itself to an effective method for removing sulfur from process streams forming separated streams of H₂S or SO₂
- Process continuously regenerates the redox carrier

Technical Approach

- The immobilized ionic liquid membrane will embody metallic electrodes deposited on both sides to form a membrane and electrode assembly (MEA)
- These electrodes might function catalytically, but mainly serve as electron donor and acceptor current collectors
- Thus, we can select metals that have known corrosion resistance to hydrogen sulfide that include
 - tantalum, molybdenum, tungsten, aluminum, and magnesium
- Prior precedence for extractive desulfurization in fuels using ionic liquids based on
 - 1-alkyl-3-methylimidazolium [Amim] and either tetrafluoroborate [BF₄] or hexafluorophosphate [PF₆]
 - Trimethylamine hydrochloride (AlCl₃-TMAC), ethyl-[MIMBF₄], butyl-[MIMPF₆], and butyl-[MIMBF₄] also have shown sulfur selectivity
 - Regeneration steps had to be used with these ionic liquids making their use limited in a continuous manner unless multiple beds are used
- Proposed facilitated transport process aims to overcome the regeneration difficulties culminating in a continuous process

Facilitated Transport Chemistry

- Primary transport is through redox carrier that can reversibly bind to CO₂/H₂S
- For example: acid/base reaction of dianionic quinones with CO₂
 - electron rich oxygens donate and share electron pairs with electrophilic carbon of CO₂
 - Forms stable carbonates
 - dtBBQ studied extensively*

 *Paul Scovazzo, Univ. of Miss.
Carl Koval, Richard Noble, Univ. of Colorado Daniel Dubois, PNL
Alan Hatton, MIT
Karen Jayne, Reactive Innovations

Electrolyte Development

- Considered ionic liquids that included
 - 1-ethyl,3-methylimidazolium bis-trifluoromethylsulfonylimide [emim-bis(tFSI)]
 - butylmethylpyrrolidinium bis(trifluoromethylsulfonyl)imide [bmpdim-bis(tFSI)]
 - 1-ethyl-3-methyl imidazolium trifluoromethanesulfonate [emim-tFMS]
 - 1-butyl-3-methylimidazolium octylsulfate [Bmim-OcSO₄]
 - 1-ethyl-3-methyl-imidazolium ethylsulfate [Emim-EtSO₄]
- Considered redox carriers that included
 - di-tertiary butyl benzoquinone [dtBBQ]
 - 2-t-butylanthraquinone (TBAQ)
 - Ethanolamine
 - Ethylenediamine
 - Aminobutyric acid salt/poly(allylamine)
 - Fe-CDTA
 - Coenzyme-Q-10

- Used three-step evaluation process
 - 1) determine if the redox carrier is soluble in the ionic liquid, then
 - 2) use cyclic voltammetry to show the redox carrier has reversible behavior, then
 - 3) evaluate the ionic liquid/redox carrier with and without H₂S being present to show which ones bind and release sulfur

Experiment number	Ionic liquid	Redox carrier	Soluble at 0.05M Or Misc/non- Misc	Redox ac tivit y via Cyclic voltamm etr y
1	[emim(tFMS)]	DtBBQ Ditertiary butyl Benzoquinone	Yes	Yes
6	[emim(tFMS)]	Fe-CDTA	Yes	Yes
16	[emim- bis(tFSI)]	TBAQ 2-t-butyl anthroquinone	Yes	Yes
22	BMIM OcSO4	DtBBQ	Yes	Yes
23	BMIM OcSO4	TBAQ	Yes	Yes
26	BMIM OcSO4	A minobutyric acid salt/polyallylamine	Misc	No
27	BMIM OcSO4	Fe CDTA	Yes	No
31	EMIM EtSO4	Ethanoloamine	Misc	Yes
32	EMIM EtSO4	Ethylenediamine	Misc	No

Redox Carrier Solubility Assessment

- Solubility of the redox carriers in the ionic liquids qualitatively assessed
- Targeted concentration of 0.05M
- Small samples (1-2 ml) of the redox/ ionic liquid formulations prepared and left stirring for at least 48 hours
- Moderate heating (~50 C) was used in some cases to effect dissolution
- Qualitative Yes/No/Partial solubility metric used for the redox carrier
- For cases where the redox carrier is a liquid, we use a "miscible/ immiscible" characterization

Cyclic Voltammogram of Ionic Liquid Emim-tFMS Showing Featureless Behavior

Scan rate 20mV/s, Pt wire working electrode vs Ag/AgCl reference

Cyclic Voltammogram of Ionic Liquid Emim-tFMS with DtBBQ Showing Dual Oxidation and Reduction Peaks

Scan rate 20mV/s, Pt wire working electrode vs Ag/AgCl reference

Cyclic Voltammetry of DtBBQ in [Emim][TFMS] With and Without H₂S

Another Successful Cyclic Voltammogram using Emim EtSO₄ in Ethanoloamine With and Without 100 ppm H₂S

Membrane and Electrode Assembly Development

- Fabrication of MEA
 - Membrane:
 - Uncoated Nafion, Catalyzed Nafion,
 - Microporous membranes
 - Catalyst: Electrolessly deposited Pt
 - Electrodes: corrosion resistant materials
 - Metals: molybdenum, tungsten, aluminum, and magnesium
 - Carbon fiber: recently developed 3-dimensional carbonfiber braided electrode
 - Imbibe ionic liquid/redox carrier in the membranes
- Component arrangement
 - Planar and Tubular Cell Designs
 - Constructed as electrode/separator/electrode
 - Challenge is to improve transport rate: multiple redox carriers, thinner membranes, redox carrier solubility

Evaluate MEAs for H₂S, CO₂ and VMS Separation Using Planar and Tubular Cell

- H₂S detected using UV-Vis spectrophotometry
- Simulated biogas: 100 ppm H₂S/ balance N2 or CH₄

Single Cell Testing Using Down-Selected Electrolytes Shows H₂S Removal

• Prepared imbibed membranes

MEA	Redox carrier	Ionic liquid	Membrane
Nafion-1	dtBBQ	Emim TFMS	Nafion
Nafion-31	Ethanolamine	EMIM EtSO4	Nafion
Celgard-1	Dt BBQ	Emim TFMS	polypropylene

Current Response With Cycling H₂S On/Off

Electrodes: Catalytic or a Current Sink/Source?

Stage 1

- Pt-catalyzed Nafion
- Imbibed with redox carrier/IL
- Pt mesh current

Stage 1. Demonstrated H_2S transport

<u>Stage 2</u>

- Uncatalyzed Nafion
- Imbibed with redox carrier/IL
- Pt mesh current collector

Stage 2. H_2S transport without catalyzed membrane:

Stage 3

- Uncatalyzed Nafion
- Imbibed with redox carrier/IL
- High surface area, corrosion resistant current collector

Stage 3. H_2S transport without catalyzed membrane and a carbon yarn electrode

Extension to Reactive's Tubular Reactive-Separator to Increase Membrane Surface Area to Volume Ratio

Imbibed redox carrier/ionic liquid in tubular membrane for H₂S removal

- Tubular Nafion imbibed with dual redox carrier/ionic liquid
- Braided carbon yarn current collectors used

H₂S Removal/Transport Rate

MEA	membrane	Electrodes	H ₂ S Transport rate (moles/s/cm ²)
100	Nafion	Platinum	7.88 X 10 ⁻⁹
101	Nafion	carbon yarn	1.08X10 ⁻⁸
300	Celgard (polyproplylene)	carbon yarn	1.32 x 10 ⁻⁸

- Transport rate is calculated based on current measured at 4 volts
- Using current performance levels, a H₂S separation module would require 65 6-inch tubular MEA cells to remove 1% H₂S from a 7 L/min biogas stream for a 1 kW solid oxide fuel cell
 - Approximate reactor size 2" diameter, 8" long, < 1 lb
 - Power requirement 12 W

Extensions to Other Systems

- Selective separation using the facilitated transport process viable for other systems including
 - CO_2 removal (previously shown by others and Reactive for CO_2 in air/water)
 - H₂S, CI, F, and Si contaminants from biogas waste-to-fuel processing
 - H₂S and SO₂ selective sensing applications for landfills, animal feeding operations, and oil facilities
- Challenge is in finding optimal ionic liquid/redox carrier selective to the contaminant
 - Successful candidates for H₂S/SO₂ separation include DtBBQ in Emim-(tfms) and Fe-CDTA in Bmim-OcSO₄
- Separation transfer rates are low (4 mA/cm²), thus require large membrane surface area (*e.g.*, tubular MEA arrays)
 - However, for trace contaminant removal, the separator size and power levels are low
- Continued work focusing on minimizing ionic liquid/redox carrier steric hindrance effects in the membranes and minimizing ohmic resistance

This work has been supported by NASA contract No. NNX09CD16P

