

Electrochemical Conversion of Carbon Dioxide to Oxygen in Ionic Liquid Media

Reactive Innovations, LLC

2 Park Drive, Suite 4

Westford, MA 01886

Presented at the Northeast Regional Meeting of the

American Chemical Society

Burlington, VT

July 1, 2008

Reactive Innovations, LLC

2 Park Drive, Su Michael C. Kimble, Thomas J. Blakley, Daniel R. Carr, and Karen D. Jayne Reactive Innovations, LLC 2 Park Drive, Suite 4 Westford, MA 01886

Presented at the Northeast Regional Meeting of the American Chemical Society Burlington, VT

July 1, 2008

- NASA missions need to extract oxygen from carbon dioxide for advanced life support and human exploration missions **Problem Background

MASA missions need to extract oxygen from carbon dioxide for

dyanced life support and human exploration missions

Martian In-Situ Resource Utilization (ISRU) aims to process

arbon dioxide (95% in at**
- Martian In-Situ Resource Utilization (ISRU) aims to process carbon dioxide (95% in atmosphere) to oxygen
	-
	-
- **Problem Background**

MASA missions need to extract oxygen from carbon dioxid

dvanced life support and human exploration missions

Martian In-Situ Resource Utilization (ISRU) aims to proce

arbon dioxide (95% in atmosphe • Ionic liquid based carbon dioxide reduction can enable low temperature operation less than 100 °C JASA missions need to extract oxygen from carbon dioxid
dvanced life support and human exploration missions
Aratian In-Situ Resource Utilization (ISRU) aims to proces
arbon dioxide (95% in atmosphere) to oxygen
– Sabatier
- Goal is to electrochemically reduce $CO₂$ in an electrochemical reactor based on an immobilized ionic liquid in the separator advanced life support and human exploration missions

• Martian In-Situ Resource Utilization (ISRU) aims to process

carbon dioxide (95% in atmosphere) to oxygen

– Sabatier: CO₂ + 4H₂ → CH₄ + 2H₂O and then H₂O
	-
	-
- an oxide ion and optimizing the electrochemical reactions

Electrochemical CO₂ Reactor Approach Electrochemical CO₂ Ream

M&D activities focused on

- Membrane separator

- Ion-exchange: Nafion

- Ionic liquid electrolyte

- R&D activities focused on
	- -
		-
	- -
		-
		-
	- -
	- -
		- activity
	- -

Methodology for Screening Ionic Liquid Imbibed Membranes

- Developed a list of ionic liquid anion/cation combinations considering
	- aprotic, protic, zwitterion type ILs, ionic association, size
- Utilize a chemical catalyzation technique to electrolessly deposit platinum catalyst onto Nafion 115 ion-exchange membranes
- Imbibe ionic liquids into platinized Nafion films
- Ionic liquid cation groups
	- Emim: 1-ethyl,3-methylimidazolium
	- Bmim: 1-butyl,3-methylimidazolium
	- BFP: butylmethylpyrrolidinium
- Ionic liquid anion groups
	- BF4: tetrafluoroborate
	- PF6: hexafluorophosphate
	- FMS: trifluoromethanesulfonate
	- TFSI: bis-trifluoromethylsulfonylimide
	- CH3CO2: Acetate
- Evaluate samples using cyclic voltammetry and chronoamperometry

Representative Cyclic Voltammogram for $CO₂$ Reduction -Slight Increase in Reactivity with Increasing Pressure

Comparison of $CO₂$ Reduction Over N₂ Baseline Emim-BF4 Gives Highest CO₂ Reduction Rate

Summary of CO₂ Reduction in IL Imbibed MEAs

- High $CO₂$ reduction rates were observed with MEAs imbibed with ionic liquids having the BF_{4} anion, TFMS also gives high performance
- Low $CO₂$ reduction rates were observed with MEAs imbibed with TFSI
- MEAs having the ionic liquids with the EMIM cation performed better than those with the BMIM cation
- Results indicate decreasing reactivity with increasing anion size
	- \bullet $\,$ CO $_{2}$ reactivity trend: BF $_{4}$ > TFMS> TFSI
	- Consistent with a cluster network model of the Ionic liquid/Nafion Composite **Structure**
	- Primary charge transfer from counter ions: imidazolium cations
	- Large anions hinder access and decrease IL packing density in pores

• Electrode surface area is also playing an important role in this process. High surface area platinum electrolytically deposited onto the catalyzed MEA gave the highest activity

CO2 Reactivity in Ionic Liquids/Platinum Electrodes

- Want to understand what governs the reaction behavior of CO₂ in the $\quad\rm CO_{2}$ (Gas Phase) $\rm CO$ ionic liquid system CO₂ Reactivity in Ionic Liquids/Platin

Vant to understand what governs

the reaction behavior of CO₂ in the

polic liquid system

Is it the dissolution of CO₂ in the

ionic liquid, followed by its

diffusion to a r CO₂ Reactivity in Ionic Liquids/PI

Vant to understand what governs

the reaction behavior of CO₂ in the

polic liquid system

- Is it the dissolution of CO₂ in the

ionic liquid, followed by its

diffusion to a rea Volgon Leaderviky in Torne Enquivers

Want to understand what governs

ne reaction behavior of CO_2 in the

polic liquid system

- Is it the dissolution of CO_2 in the

ionic liquid, followed by its

diffusion to a rea
	- Is it the dissolution of $CO₂$ in the ionic liquid, followed by its diffusion to a reaction site, or
	- the electrode surface, or
	- of CO $_{\rm 2}$ on the electrode?

- Construction of the construction of the construction

Experimental Measurements Show Significant Direct CO₂ Gas Phase Reduction on Platinum

- Higher CO₂ Reduction 1.6E-04 Currents Measured When More Platinum Electrode is Exposed to

and
 $\sum_{1.0\in 04}$ Gaseous $CO₂$
Implications that Higher
- Implications that Higher $\frac{1}{5}$ 8.0E-05 Surface Area Platinum 6.0E-05 Electrodes be Developed on the Outer _{20E-05} Surface of the Ionic

interaction of the Ionic Liquid-Membrane $\frac{0.06+0.0}{25}$ $\frac{1}{25}$ $\frac{1}{50}$ $\frac{1}{25}$ $\frac{1}{50}$

Depth (mils)

Reactive Innovations, LLC

Micro-Porous Membranes Show Higher Equilibrium Transport Currents Micro-Porous Membranes Show

Transport Curre

upplied 3 V across cell

Measured current over time

Cathode: N₂ or O₂

unode: N₂

Separator

- Nafion 115/emim-BF4

- Celgard/emim-BF4

- Celgard/emim-BF4

- Sale ion t

- Applied 3 V across cell
- Measured current over time
- Cathode: N_2 or O_2
- Anode: N_2
- Separator
	-
	-
- Oxide ion transport current \int_{0}^{∞} higher than nitrogen background current
- Interaction of the Nafion pores/ion-exchange groups and ionic liquid lowers the MEA ionic conductivity

Equilibrium Current Density for $CO₂$ Reduction

- Applied 3 V across cell
- Measured current over time
- Cathode: N_2 , O_2 , or CO_2 ...
- Anode: N_2
- Separator:
	-
- Oxide ion current (from $CO₂$ or O_2 reduction) higher than 10^{10} nitrogen background current
- Faster decay rate for $CO₂$
	-

Initial Peak Currents for $CO₂$ Reduction Favor Pt Catalyst Over Pt/Ru alloys **Initial Peak Currents for CO₂ F

Catalyst Over Pt/Ru

Applied 3 V across cell

Measured initial current

Cathode: CO₂

- Pt(100%), Pt/Ru(25% molar),

Pt/Ru(50%), Pt/Ru(75%)

Anode: N₂

- Pt (100%) Initial Peak Currents for CO₂ F

Catalyst Over Pt/Ru

Applied 3 V across cell

Measured initial current

Cathode: CO₂

- Pt(100%), Pt/Ru(25% molar),

Pt/Ru(50%), Pt/Ru(75%)

anode: N₂

- Pt (100%)

Separator:

- Na**

- Applied 3 V across cell
- Measured initial current
- Cathode: $CO₂$
	- Pt/Ru(50%), Pt/Ru(75%)

	de: N₂ $\frac{1}{3}$
- Anode: N_2
	-
- Separator:
	-
- Highest initial $CO₂$ reduction for 100% Pt catalyst on cathode
- Lower activity with Ru addition suggests Pt/Ru composition and catalyst loading could be optimized

Ruthenium Addition to Platinum Cathode Stabilizes Decay **Ruthenium Addition to Plat

Stabilizes Deca

Applied 3 V across cell

Measured current over time

Cathode:

- CO₂

- Pt(100%), Pt/Ru(25% molar), 08

Pt/Ru(50%), Pt/Ru(75%)

anode: Ruthenium Addition to Plat

Stabilizes Deca

Applied 3 V across cell

Measured current over time

Cathode:

- CO₂

Pt(100%), Pt/Ru(25% molar),** $\leftarrow \begin{bmatrix} 1 \\ 0.8 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.6 \end{bmatrix}$ **

Pt/Ru(50%), Pt/Ru(75%)
**

- Applied 3 V across cell
- Measured current over time
- Cathode:
	-
	- Pt/Ru(50%), Pt/Ru(75%)

	Pt/Ru(50%), Pt/Ru(75%)
 $\frac{2}{3}$

	Pt/Ru(50%), Pt/Ru(75%)
 $\frac{2}{3}$

	Pt/Ru(50%), Pt/Ru(75%)
- Anode:
	-
	-
- Separator:
	-
- Pt/Ru cathode catalysts stabilize performance
- Significant lowering in initial activity suggests Pt/Ru optimization

- \bullet Identified platinum as a preferred catalyst choice for CO_2 reduction
	-
- **Summary Electrode Development**

dentified platinum as a preferred catalyst choice for CO₂

eduction

 Stable with ionic liquids and potential windows (0 to 3 volts)

 Can be deposited on ion-exchange membranes usin **Summary - Electrode Development

dentified platinum as a preferred catalyst choice for** CO_2 **

eduction

- Stable with ionic liquids and potential windows (0 to 3 volts)

- Can be deposited on ion-exchange membranes using** and electrolytic techniques
- **Summary Electrode Development**

dentified platinum as a preferred catalyst choice for CO_2

eduction

 Stable with ionic liquids and potential windows (0 to 3 volts)

 Can be deposited on ion-exchange membranes usin the performance **Example 12**

dentified platinum as a preferred catalyst choice for CO_2

eduction

- Stable with ionic liquids and potential windows (0 to 3 volts)

- Can be deposited on ion-exchange membranes using electroless

and el
- \bullet CO₂ reaction process investigated
	- reaction of $CO₂$ on platinum outside the ionic liquid phase
- dentified platinum as a preferred catalyst choice for CO_2
eduction
- Stable with ionic liquids and potential windows (0 to 3 volts)
- Can be deposited on ion-exchange membranes using electroless
and electrolytic techniq that occurs if the Pt catalyst is coated or submerged in the ionic liquid/membrane phase – Stable with ionic liquids and potential windows (0 to 3 volts)

– Can be deposited on ion-exchange membranes using electroless

and electrolytic techniques

– Some indications that CO is poisoning the Pt, adding Ru stab
	- the ionic liquid environment to maximize the reduction of $CO₂$

Summary – Electrochemical CO₂ Reduction Reactor

• Ionic Liquid

- **Summary Electrochemical CO

 High CO₂ reduction rates observed with ME

 High CO₂ reduction rates observed with ME

 MEAs having the ionic liquids with the EMIN

 MEAs having the ionic liquids with the EMIN** $-$ High CO₂ reduction rates observed with MEAs imbibed with ionic liquids having BF_{4} anion
- **Summary Electrochemical CO₂ Reduction Reactor**

This Liquid

 High CO₂ reduction rates observed with MEAs imbibed with ionic liquids

 MEAs having the ionic liquids with the EMIM cation performed better than

tho those with the BMIM cation Summary – Electrochemical CO₂ Reduction Reactor

— High CO₂ reduction rates observed with MEAs imbibed with ionic liquids

— MEAs having the ionic liquids with the EMIM cation performed better than

— MEAs having the Summary – Electrochemical CO₂ Reduction Reactor

– High CO₂ reduction rates observed with MEAs imbibed with ionic liquids

having BF₄ anion

– MEAs having the ionic liquids with the EMIM cation performed better than
-
- Processing metrics
	- reactor module can reduce 0.08 g/hr of $CO₂$ producing 0.03 g/hr of $O₂$

