

Electrochemical Process Technologies for Water Processing

Presentation to 215th Electrochemical Society Meeting

B. Slote, D.Carr, K.D. Jayne, T.J. Blakley, and M.C. Kimble Reactive Innovations, LLC
2 Park Drive, Unit 4 Westford, MA 01886

May 26, 2009

Problem Background

- Over 250 drinking water systems exist for small communities in Puerto Rico that serve 25-500 individuals
- These sources are from ground and surface waters
- Flow rates are upwards of 50,000 gallons per day for a community of 500 people
- The EPA desires improved novel filtration and chlorination methods that can disinfect and filter these drinking water sources
- To address this need, Reactive Innovations, LLC has been developing an on-site hypochlorite generator that can continuously chlorinate surface groundwater

Puerto Rico Small Community Water Quality Characteristics

- Semi-tropical island creates a high organic content in the water
- Water quality fluctuates significantly, especially in surface water where total suspended solids (TSS) change drastically
- Chlorine application rates vary from 3-4 ppm for surface water to 1-3 ppm for ground water
- High contamination levels in these water systems indicate the need for more dependable and cost effective solutions

	Surface		Ground	
	raw	distributed	raw	distributed
turbidity (NTU)	1.8	4.8	0.3	0.5
total coliforms (per ml)	900	60	6	13
fecal coliforms (per ml)	100	10	5	0.25
Escherichia coli (per ml)	20	1	5	13
fecal streptococci (per ml)	30	3	0	1
heterotrophic plate count (per ml)	4000	10000	1200	110
free chlorine (ppm)		0.38		0.36
total chlorine (ppm)		0.42		0.4

Reactive Innovations, LLC

Water treatment with shipped sodium hypochlorite

- Issues with this method
 - Unfeasible to transport relatively small quantities to remote areas
 - Hazards associated with transport and storage of bleach
 - High maintenance demand

Chlorine tablets

- Currently used in small Puerto Rican communities
- Issues with this method
 - Demands tablet delivery
 - Non-uniform disinfecting of water can be hazardous

On-site hypochlorite generators

- Technology: electrochemical chlor-alkali process
 - Uses sodium chloride solution and untreated water
 - Products: chlorine and sodium hydroxide (caustic soda)
 - Cl₂ and NaOH react to form sodium hypochlorite (NaOCI)
- Issues with current technology
 - Requires process water slipstreams to generator
 - Including additional valves, piping, maintenance
 - Salt and water process streams not separated
 - Relatively large reactor
 - Excess salt enters process water
 - 0.8% sodium hypochlorite product solution must be metered into process water

Technical Innovation

- The innovation for this process is a tubular electrochemical reactor that efficiently produces sodium hypochlorite in a design format that simplifies the balance of plant operation
- Two design modes under consideration

1) Traditional chlor-alkali process with hydrogen liberation

_	Anode:	2Na⁺ + 2Cl⁻ → Cl₂ + 2e⁻ + 2Na⁺	E° = -1.36V	[1]
_	<u>Cathode</u>	<u>: 2H₂O + 2e⁻ → H₂ + 2OH⁻</u>	E° = -0.828V	[2]
_	Overall:	$2NaCI + 2H_2O \rightarrow CI_2 + H_2 + 2NaOH$	E° = -2.19V	[3]

2) Air depolarized cathode to suppress hydrogen liberation

_	Anode:	$2Na^+ + 2CI^- \rightarrow CI_2 + 2e^- + 2Na^+$	E° = -1.36V	[4]
_	Cathode:	<u>1/20₂ + H₂O + 2e⁻ → 2OH⁻</u>	$E^{\circ} = 0.40V$	[5]
_	Overall:	2NaCl + H ₂ O + 1/2O ₂ → Cl ₂ + 2NaOH	E° = -0.95V	[6]

- These anode and cathode streams are mixed to form sodium hypochlorite
 - CI_2 + 2NaOH → NaCl + H_2O + NaOCl

Tubular Electrochemical Reactor Technology Platform

• Tubular cell design schematic

Tubular Membrane and Electrode Assemblies

• MEA: membrane-and-electrode assembly

• Tubular catalyzed Nafion proton-exchange membrane with wire braided at its inner and outer surfaces for current collection

Close-Up Images of Tubular MEAs

Tubular MEA Arrays Allow High Flow Rate, Low Pressure Drop Operations

- 5-tube array of MEAs connected in parallel
 - Consistent, balanced electrical and fluid flow through tubes
 - Outer braid contacts cathode current collectors
 - Inner braid contacts anode current collector
- Technology derived from our NASA high pressure electrolyzers

Innovative Tubular Electrochemical Reactor

- Flow-through design incorporates array of tubular membraneand-electrode assemblies
 - Optimizes mixing efficiency
 - Simplifies balance of plant operation

Reactive Innovations, LLC

4-Tube Array Chlor-Alkali Performance Shows Stable Performance

Better Air Depolarized Performance with Brine Flow Through Inner Annulus

Reactive Innovations, LLC

Reactor Array Performance for Producing 5 ppm Chlorine Content at Variable Water Flow Rates

Tubular Reactor Platform Minimizes System Complexity

Pilot-Scale System

• 35-gallon brine tank

Capital Equipment Cost Lowered with Tubular Chlor-Alkali Reactor

- Reactor size and cost reduction over competitive on-site hypochlorite units
- Elimination of slip stream metering processes requiring few components
- Less salt carry-through with treated water allowing one-year of unattended operation

Major Components*	Cost
Brine Tank	\$198
Tubular Reactor	\$1000
Mixer	\$40
Power Supply	\$500
Tubing & Fittings	\$100
Total - Approximate	\$2000

* Using existing pump and holding tank

Operating Costs for Treating 50,000 Gallons/day at a 5 ppm Chlorine Content

Component	Annual kW-hr	Annual Costs*
Pump	441 kW-hr	\$66
Reactor	761 kW-hr	\$114
System-Electrical	1202 kW-hr	\$180
Salt	1255 (lbs)	\$110
Total Yearly		\$290
Average Daily Cost		\$0.79

* Using \$0.15/kW-hr electrical cost

Performance Summary for an On-Site Sodium Hypochlorite Generator

- The generator is based upon a compact and efficient chlor-alkali process using an array of tubular electrochemical cells that can produce chlorine and caustic soda, and their combined product of sodium hypochlorite
 - Module designed to treat 50,000 gal/day at 5 ppm equivalent chlorine
- With this approach, we have minimized the capital and operating costs of the electrolyzer and simplified the balance of plant operation for producing a continuous stream of hypochlorite for treating surface and ground waters
- This disinfection process produces the sodium hypochlorite on-site avoiding hazardous chemical storage, minimizes the operating requirements to salt, water, and electricity, and produces a continuous and effective disinfectant for small community usage

This work was funded by the Environmental Protection Agency under the Small Business Innovation Research (SBIR) Program, contract No. EP-D-08-041

